
CHERI projects overview
Alex Richardson

This document is a brief collection of various CHERI-related information, e.g. Documentation,
hardware implementations and emulators, the available CHERI-enabled software stack (and the
underlying toolchain infrastructure), supported programming languages, and a short list of new
security (and performance) features that are possible using the CHERI architectural primitives.

If something is missing/not clear or if you would like to know whether a given open-source
project has been ported to CHERI please leave a comment or message .Alex Richardson

mailto:alexrichardson@google.com
mailto:alexrichardson@google.com


Documentation

CHERI architecture documentation
An Introduction to CHERI

This report is a fairly high-level overview of CHERI. It was published in 2019 and
therefore does not mention Morello, but is still a good starting point.

CHERI Instruction-Set Architecture (Version 8)
This is the latest version of the detailed reference manual (almost 600 pages). Describes
the architecture-independent aspects of the CHERI protection model, the CHERI RISC-V
(and MIPS) implementations, microarchitectural techniques, instruction references,
various experimental features/design ideas.

Adversarial CHERI Exercises and Missions
A few exercises to explore CHERI memory protection features. Also includes some more
complex exercises for uninitialized memory and temporal safety.

Arm’s Morello documentation
Arm Architecture Reference Manual Supplement - Morello for A-profile Architecture

Overview of the Morello capability format, instruction opcodes+semantics, etc.

https://git.morello-project.org/morello/docs
Various documents describing how to get started with Android and baremetal Morello
development.

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-morello.html
Various Morello resources from Cambridge.

Porting C/C++ programs to CHERI
CHERI C/C++ Programming Guide

This report gives an overview over the things to look out for in CHERI C/C++. It also
documents various C/C++ intrinsics and the sub-object bounds feature.

Assessing the Viability of an OpenSource CHERI Desktop Software Ecosystem
This recent report (Aug 2021) includes detailed analysis of changes required to run a
KDE Plasma desktop on top of CheriBSD on CHERI-RISC-V and Morello - very few no
changes were required (0.0026% SLoC modified)

CheriABI: Enforcing Valid Pointer Provenance and Minimizing Pointer Privilege in the POSIX C
Run-time Environment

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://ctsrd-cheri.github.io/cheri-exercises/introduction/index.html
https://developer.arm.com/documentation/ddi0606/latest
https://git.morello-project.org/morello/docs
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-morello.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.html
https://github.com/Capabilities-Limited/Capabilities-Limited.github.io/blob/main/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf


This paper describes the changes needed in an operating system kernel+userspace to
support CHERI capabilities (e.g. context switching/system calls/swap/etc.)
Important: the statistics (and some descriptions) of the required changes are partially
out of date because compiler improvements have removed the need for many of them.



Hardware implementations and emulators
There are multiple emulators and FPGA implementations that can be used to run CHERI code.
In general, QEMU is the easiest and fastest tool, but depending on use-cases the other
implementations are also useful.

CHERI-QEMU
● Fork of QEMU maintained by the University of Cambridge that adds CHERI support
● Supports 32- and 64-bit CHERI-RISC-V, Morello (currently only in the dev branch), and

CHERI-MIPS (deprecated, may be removed eventually)
● Fastest available emulator for all CHERI-enabled architectures
● No binary releases (a somewhat supported docker image exists), building it locally with

cheribuild is recommended
● Source code: https://github.com/CTSRD-CHERI/qemu

Arm Morello FVP
● Official Morello emulator
● Significantly slower than QEMU but more realistic whole-system emulation (for example,

it also emulates the SCP and MCP and can be used to develop that firmware).
● Like QEMU the FVP is not cycle-accurate
● Can be downloaded for x86 Linux here
● Alternatively, cheribuild provides infrastructure to install and run it on macOS using

docker

CHERI-RISC-V FPGA implementations
The University of Cambridge maintains three RISC-V implementations:

● Tooba
○ Out-of-order 64-bit CHERI-enabled RISC-V core
○ Bluespec SystemVerilog source code: https://github.com/CTSRD-CHERI/Toooba

● Flute
○ 64-bit CHERI-enabled RISC-V core with in-order 5-stage pipeline
○ Bluespec SystemVerilog source code: https://github.com/CTSRD-CHERI/Flute

● Piccolo
○ 32-bit CHERI-enabled RISC-V core with in-order 3-stage pipeline
○ Bluespec SystemVerilog source code: https://github.com/CTSRD-CHERI/Piccolo
○ Barely any active development - bug fixes and updates to shared code only

Sail formal model for CHERI-RISC-V
● Formal model written in the Sail architecture definition language

https://github.com/CTSRD-CHERI/qemu
https://developer.arm.com/tools-and-software/open-source-software/arm-platforms-software/arm-ecosystem-fvps#:~:text=Reference%20Design%20FVP-,Morello%20Platform%20FVP,-Morello%20Platform%20FVP
https://github.com/CTSRD-CHERI/Toooba
https://github.com/CTSRD-CHERI/Flute
https://github.com/CTSRD-CHERI/Piccolo
https://github.com/rems-project/sail


● Generates 32- and 64-bit CHERI-RISC-V simulators from the ISA description (very slow
compared to QEMU)

● Also used to generate parts of the CHERI ISA documentation and theorem prover
definitions

● Source code: https://github.com/CTSRD-CHERI/sail-cheri-riscv

Sail formal model for Morello
● Similar to the RISC-V version but auto-generated from Arm’s architecture specification

with only a few hand-written changes
● Not (yet?) available as open-source

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://github.com/CTSRD-CHERI/sail-cheri-riscv


Software toolchain

cheribuild
● Script to automate building and running most of the CHERI and (non-Android) Morello

software stack
● Can be used to build e.g. the toolchain+QEMU emulator+CheriBSD operating system as

well as lots of 3rd-party applications that have been ported to CHERI C/C++ (including
e.g. WebKit or the KDE Plasma desktop plus dependencies)

CHERI LLVM/Clang/LLD
● Compiler and linker for CHERI-RISC-V (and deprecated CHERI-MIPS)
● Supports both pure-capability and hybrid compilation modes for C and C++
● Currently based on LLVM 13
● Source code: https://github.com/CTSRD-CHERI/llvm-project

Morello LLVM/Clang/LLD/LLDB
● Arm’s fork of CHERI LLVM that adds support for Morello
● Unlike CHERI LLVM, the Morello version also has a port of the LLDB debugger for Linux
● Generally lags quite far behind CHERI LLVM - currently about 1 year of upstream

changes behind CHERI LLVM
● (Currently) breaks RISC-V support, so should only be used for Morello
● Source code: https://git.morello-project.org/morello/llvm-project
● Linux x86 binaries: https://git.morello-project.org/morello/llvm-project-releases

Note: these are usually rather outdated, so building from source is recommended

Morello GCC
● Arm also has a team working on Morello support for GCC
● Extremely experimental, not sure if recent source code is available yet
● Pure-capability compilation only

CHERI GDB
● GDB with CHERI support for CHERI-RISC-V (and partially Morello) maintained by the

University of Cambridge
● Can be used to debug CheriBSD binaries or baremetal applications
● No binutils support (CHERI-RISC-V is LLVM only)
● Source code: https://github.com/CTSRD-CHERI/gdb

https://github.com/CTSRD-CHERI/llvm-project
https://git.morello-project.org/morello/llvm-project
https://git.morello-project.org/morello/llvm-project-releases
https://github.com/CTSRD-CHERI/gdb


Morello GDB and GNU binutils
● Arm maintains a version of GDB with support for debugging Morello Linux binaries
● Unlike CHERI GDB, this includes binutils supports (assembler works, not sure if ld.bfd is

supported)
● Source code: https://git.morello-project.org/morello/binutils-gdb

Morello firmware
● Arm provides version of their firmware for Morello boards (also needed for the FVP, not

needed for QEMU)
● IIRC these are minimal adaptations rather than making extensive use of CHERI
● Source code:

○ https://git.morello-project.org/morello/scp-firmware
○ https://git.morello-project.org/morello/trusted-firmware-a
○ https://git.morello-project.org/morello/edk2
○ https://git.morello-project.org/morello/edk2-platforms

https://git.morello-project.org/morello/binutils-gdb
https://git.morello-project.org/morello/scp-firmware
https://git.morello-project.org/morello/trusted-firmware-a
https://git.morello-project.org/morello/edk2
https://git.morello-project.org/morello/edk2-platforms


CHERI-enabled operating systems/software stacks

CheriBSD (FreeBSD with CHERI support)
● CheriBSD is the most mature software platform for CHERI development
● Supports CHERI-RISC-V and Morello (successfully boots on the real Morello hardware)
● Fully working FreeBSD base system with all common UNIX utilities
● Lots of third-party software can be run on top of this platform (including X11 GUI - albeit

currently only over VNC)
● Maintained by the University of Cambridge and SRI
● Easiest way to run it is with cheribuild
● Source code: https://github.com/CTSRD-CHERI/cheribsd
● Binary release snapshot: https://cheri-dist.cl.cam.ac.uk/releases/2021.08/relnotes.html

(requires docker to run)

Linux kernel
● Linux kernel with basic support for Morello (e.g. context switching of capability registers)
● System call ABI in progress, but currently relies on Morello libshim for CHERI system

calls
● Currently based on Android 12 kernel (Linux 5.10)
● Source code: https://git.morello-project.org/morello/kernel/morello-ack/
● Implementation questions best directed at Kevin.Brodsky@arm.com

Android
● Currently based on Android 11 (update to 12 in-progress)
● Available from https://git.morello-project.org/morello/android (e.g. Bionic)
● I have never tried running it so very limited knowledge on the degree of CHERI-adaption,

for further details I’d recommend asking Ruben.Ayrapetyan@arm.com
● More information here:

https://git.morello-project.org/morello/docs/-/blob/morello/mainline/android-readme.rst

CheriOS
● Single-address space microkernel OS written from scratch for CHERI-enabled

architectures (currently only for MIPS, but ongoing work to port to RISC-V & Morello)
● Highly compartmentalized system
● Complete distrust between components, only TCB is the “nanokernel”
● For design choices, etc. see Lawrence Esswood’s PhD dissertation: CheriOS: designing

an untrusted single-address-space capability operating system utilising capability
hardware and a minimal hypervisor

● Source code: https://github.com/CTSRD-CHERI/cherios

https://github.com/CTSRD-CHERI/cheribsd
https://cheri-dist.cl.cam.ac.uk/releases/2021.08/relnotes.html
https://git.morello-project.org/morello/kernel/morello-ack/
mailto:Kevin.Brodsky@arm.com
https://git.morello-project.org/morello/android
https://git.morello-project.org/morello/android/platform/bionic
mailto:Ruben.Ayrapetyan@arm.com
https://git.morello-project.org/morello/docs/-/blob/morello/mainline/android-readme.rst
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-961.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-961.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-961.pdf
https://github.com/CTSRD-CHERI/cherios


FreeRTOS
● A version of FreeRTOS with support for compartmentalization
● Experimental status - will be described in Hesham Almatary’s upcoming PhD thesis
● Source code: https://github.com/CTSRD-CHERI/FreeRTOS/tree/hmka2
● Needs a custom toolchain

(https://github.com/CTSRD-CHERI/llvm-project/tree/cherifreertos-gprel-dev) and
separate branch of cheribuild to compile

RTEMS
● Port of the RTEMS Realtime SMP Kernel
● This is a basic port to CHERI-RISC-V by Hesham Almatary - not currently maintained
● Source code: https://github.com/CTSRD-CHERI/rtems

Baremetal Morello newlib
● Port of newlib to allow running pure-capability bare-metal applications
● Source code: https://git.morello-project.org/morello/newlib

https://github.com/CTSRD-CHERI/FreeRTOS/tree/hmka2
https://github.com/CTSRD-CHERI/llvm-project/tree/cherifreertos-gprel-dev
https://github.com/CTSRD-CHERI/rtems
https://git.morello-project.org/morello/newlib


Programming languages and language runtimes

C and C++
● Fully supported using the CHERI or Morello LLVM compilers

Objective-C/C++
● Unmaintained - Clang/LLVM should still work, but the

https://github.com/CTSRD-CHERI/libobjc2 runtime was last update 2017 and only ever
ported to MIPS

JavaScript runtimes

WebKit
● Various JavaScript test suites and benchmarks work correctly
● Includes basic JIT support for Morello - interpreter-only for other architectures
● Source code: https://github.com/CTSRD-CHERI/webkit
● Older QtWebKit port available at https://github.com/CTSRD-CHERI/qtwebkit

QtQML
● Qt’s QML declarative UI language includes a JavaScript runtime
● Port of version 5.15 can successfully run almost all tests on CheriBSD and is used

extensively when running a KDE Plasma desktop
● Source code: https://github.com/CTSRD-CHERI/qtdeclarative

Python
● Basic port of Python 3.8
● Proof-of-concept level - stopped working on it once Hello World ran
● Source code: https://github.com/CTSRD-CHERI/cpython

Perl
● Basic port of Perl 5.32
● Maturity level unclear - for more information contact Jessica.Clarke@cl.cam.ac.uk
● Source code: https://github.com/CTSRD-CHERI/perl5

Bash
● Can be used as an interactive shell on CheriBSD, but quite lightly tested

https://github.com/CTSRD-CHERI/libobjc2
https://github.com/CTSRD-CHERI/webkit
https://github.com/CTSRD-CHERI/qtwebkit
https://github.com/CTSRD-CHERI/qtdeclarative
https://github.com/CTSRD-CHERI/cpython
mailto:Jessica.Clarke@cl.cam.ac.uk
https://github.com/CTSRD-CHERI/perl5


● Source code: https://github.com/CTSRD-CHERI/bash

Java
● University of Manchester is working on porting OpenJDK to CHERI
● Very early prototype stage - not working yet

https://github.com/CTSRD-CHERI/bash


Miscellaneous CHERI utilities/libraries/etc.

CHERI compiler explorer
● https://cheri-compiler-explorer.cl.cam.ac.uk/ is a version of godbolt.org that allows you to

write C/C++/LLVM IR code and see the assembly code that LLVM generates for RISC-V
and Morello in different compilation modes

Morello encoding visualizer
● Visual decoding of a raw bitstring at https://www.morello-project.org/capinfo
● Source code: https://git.morello-project.org/morello/utilities/capinfo

cheri-compressed-cap
● C library to decode/encode/manipulate in-memory representations of Morello and

RISC-V (both 32 and 64 bit variants) capabilities
● Used internally in QEMU/GDB/LLVM
● Source code: https://github.com/CTSRD-CHERI/cheri-compressed-cap

CHERI CAP LIB
● Bluespec SystemVerilog library for RISC-V CHERI capability formats - this is used by the

CHERI FPGA implementations
● Partially description of the approach in the 2017 paper Efficient Tagged Memory
● Source code: https://github.com/CTSRD-CHERI/cheri-cap-lib

TagController:
● Bluespec SystemVerilog library to support CHERI tagged memory using a reserved

region of DRAM - used by the CHERI FPGA implementations
● Source code: https://github.com/CTSRD-CHERI/TagController

Morello libshim
● Library that provides (insecure) CHERI versions of Linux systems calls to allow running

software on top of a Linux kernel with very limited CHERI support
● Will be obsolete once CHERI system call support is added to Linux
● Source code: https://git.morello-project.org/morello/android/platform/external/libshim/

https://cheri-compiler-explorer.cl.cam.ac.uk/
https://www.morello-project.org/capinfo
https://git.morello-project.org/morello/utilities/capinfo
https://github.com/CTSRD-CHERI/cheri-compressed-cap
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201711-iccd2017-efficient-tags.pdf
https://github.com/CTSRD-CHERI/cheri-cap-lib
https://github.com/CTSRD-CHERI/TagController
https://git.morello-project.org/morello/android/platform/external/libshim/


Experimental CHERI-based security features

(Heap) temporal memory safety
Compiling code for CHERI provides spatial memory safety out-of-the-box. In order to get
temporal memory safety (specifically preventing use-after-reallocation) you currently have to use
experimental operating system kernel support is needed. For CheriBSD, this code lives in the
caprevoke branch of the CheriBSD repository.

The code supports two temporal safety mechanisms. Firstly there is the one described in the
CHERIvoke and Cornucopia papers (the latter being older and simulation only). Secondly, Wes
Filardo at Microsoft research is currently working on a (hopefully much) lower overhead
approach. This approach uses a new architectural MMU feature (capability load generations)
that is present in both Morello and RISC-V. It is documented in a report that is not yet publicly
available. If there is interest in reading it, I can ask for permission to share the current draft.

Both approaches look at heap memory only, for stack memory other techniques need to be
used. There is ongoing research into stack temporal safety at Cambridge, but the prototypes
have so far either not been performant enough or required too many bits in the capability format.

Sub-object bounds
The current default in Clang for C and C++ is to restrict capability bounds to the allocation level
(e.g. the range returned by malloc() or the size of a stack-allocated object). While spatial safety
prevents overflowing the structure and pointer injection is impossible, a possible CHERI-aware
exploit could still overflow adjacent non-pointer data fields within a structure (for example set a
user ID field to root).

https://github.com/CTSRD-CHERI/cheribsd/tree/caprevoke
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201910micro-cheri-temporal-safety.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf


Sub-object bounds can be enabled by passing a compiler flag Overheads are very low (just a
single added instruction). The reason this is not enabled by default is that it does impact C/C++
compatibility in some cases (e.g. container_of() usage, etc.). For details on implementation and
compatibility, see chapter 5 of Alex Richardson’s PhD dissertation.

Co-processes - multiple processes in the same address space
The experimental co-process feature allows multiple UNIX processes to share the same virtual
address space (and therefore the same page tables and TLB entries) by relying on CHERI
capability bounds for memory isolation instead of using the MMU. Once mature, it should be
possible to use this to significantly reduce the overheads for certain compartmentalization
models.

The source code for this can be found in the coexeve branch of CheriBSD and an IPC
mechanism for co-processes is in the cocall branch. I don’t think there is much documentation,
while I can probably answer some high-level questions, for anything more detailed I’d
recommend contacting trasz@freebsd.org or jhb@freebsd.org.

https://cheri-compiler-explorer.cl.cam.ac.uk/z/sM4cfM
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-949.pdf
https://github.com/CTSRD-CHERI/cheribsd/tree/coexecve
https://github.com/CTSRD-CHERI/cheribsd/tree/cocall
mailto:trasz@freebsd.org
mailto:jhb@freebsd.org

