
Certificate Transparency v2
Introduction
The goal is to make it impossible (or at least very difficult) for a Certificate Authority to issue a 
certificate for a domain without it being visible to the owner of that domain. A secondary goal is to 
protect users as much as possible from mis-issued certificates.
 
It is also intended that the solution should be backwards compatible with existing browsers and 
other clients.
 
This is achieved by creating a number of cryptographically assured, publicly auditable, append-
only logs of certificates. Every certificate will be accompanied by a signature from one or more 
logs asserting that the certificate has been included in those logs. Browsers, auditors and monitors 
will collaborate to ensure that the log is honest. Domain owners and other interested parties will 
monitor the log for mis-issued certificates.
 
The logs will not deal with revocation: that will be accomplished by existing mechanisms.

The Log
Each log is an append-only log of all certificates submitted to it. It is designed so that monitors 
can efficiently ensure that any certificate logged is promptly visible to them and can be checked for 
legitimacy (for example, by knowing which certificates the domain owner has got from CAs). It is 
also possible for auditors to efficiently check whatever partial information they have about the log 
is consistent with the append-only nature of the log.
 
In other words, monitors see the whole of the log, and watch over it on behalf of domain owners 
and other interested parties. Auditors gather partial information and then verify that all that partial 
information is consistent with the current state of the log. Inconsistencies indicate dishonesty on 
the part of the log. For example, an auditor built into a browser would verify that the certificate for 
each website the browser visited actually appears in the log.
 
In general, “consistent with the current state of the log” means that the current log provably 
contains every certificate ever signed by the log.
 
If the log ever attempts to claim that it has logged a certificate which is not actually in the log, then 
this will become apparent to auditors and monitors.
 
Thus, domain owners are assured that only their own legitimate certificates are in circulation, and 
can take action when certificates are mis-issued. This ultimately protects users as well as domain 
owners by effectively preventing masquerading as websites that are monitoring the logs.

Detailed Operation
Anyone can submit a certificate to the log. The log will immediately return a signed data structure 
known as a Signed Certificate Hash (SCH) containing
 



● The certificate and any intermediate CA certificates1.
● The time the certificate was submitted.

 
The log promises to incorporate this entry within a certain amount of time2. Failure to do so is 
considered a breach of contract by the log. This time is known as the Maximum Merge Delay 
(MMD)3.
 
The log itself consists of an ever-growing Merkle tree of all certificates ever issued. As we show 
in [ref] it is possible for anyone with a complete copy of the tree to efficiently show that any two 
versions of the tree are consistent: that is, the later version includes everything in the earlier 
version, in the same order, and all new entries come after all entries from the earlier version4. The 
size of this proof is logarithmically proportional to the number of entries.
 
As frequently as possible, but at least as often as the MMD, the log will produce a new version of 
the tree and will sign the following data, known as a Signed Tree Head (STH)
 

● The root hash of the Merkle tree.
● The number of entries in the tree. This is also, effectively, the sequence number of the 

STH.
● A timestamp that is equal to the latest timestamp of all SCHs in the tree.

 
In the unlikely event there are no new entries by the time MMD has expired, the log will insert a 
dummy certificate in the tree.
 
Monitors will be able to fetch this new version and a copy of all new certificates in the tree. 
Since they will have the previous version, they can check for themselves that the two trees are 
consistent, simply by constructing the consistency proof themselves. Any discrepancy will be a 
breach of contract by the log. Furthermore, this discrepancy will be provable - the monitor will 
be able to show the two signed versions of the tree, and that they are not consistent. Because 
they are both signed by the log, the inconsistent version can only have been produced by the log 
misbehaving.
 
It is also possible to show the log has failed to honour the MMD by showing an SCH and an STH 
whose timestamps differ by more than the MMD, and that the corresponding certificate is not 
present in the tree5. The log must always produce an STH that is more recent than the MMD on 
request.
 
Auditors will also be able to request from either the log or a monitor (or anyone with a copy of the 
log) a proof that any particular SCH is consistent with any particular STH, so long as the MMD 
has passed since the SCH was issued6. This proof consists of a Merkle path from the leaf hash 
corresponding to the SCH up to the root STH.
 

1 It is necessary to sign the intermediate CAs because otherwise it would be possible for a CA to issue a 
certificate, get it logged, revoke it, then serve it instead with a different intermediate CA sharing a private key 
with the original. This certificate would then have a valid SCH and no revocation.
2 It is necessary to allow some delay between signing a certificate and logging it because the log must be 
highly available, in order to promptly issue SCHs, but also needs to put all SCHs into a single log, which 
requires an ordering agreement across all the signers. This is a known hard computer science problem and 
cannot be done both quickly and reliably.
3 If there were not an MMD, then a log could indefinitely delay adding a certificate entry to the tree and so it 
would be possible to use that certificate to attack users without detection.
4 This is the same as saying the log is append-only!
5 This can be shown by simply enumerating the entire tree and showing it is consistent with the STH but 
does not contain the certificate.
6 Note that the proof may be available sooner if the log has already incorporated the certificate, but it does 
not have to appear until after the MMD has passed.



However, this will, of course, reveal the particular certificate that was queried and so we must also 
provide a privacy preserving mechanism for verifying SCHs. We provide two mechanisms.
 
The first makes the various proofs available via DNS. To get a sense of how this works, say you 
wanted to see the proof that a certificate with SCH hash 89abcdef is in the current tree (which 
contains, say, 1300000 entries). To find the location of the SCH in the tree, you would request a 
TXT record containing its index from
 

● 89abcdef.hash.<domain>
 
Say the returned index is 1234567. The Merkle path you want then contains the hash of certificate 
1234568, the hash of 1234565 + 1234566, and so on. To get these values, you would request a 
TXT record containing the hash from
 

● 1234567.0.1300000.tree.<domain>
● 617283.1.1300000.tree.<domain> (617283 = 1234566 / 2).

 
and so on. In general, you request <entry number>.<level>.<tree size>.tree.<domain> to get the 
hash at that position in the particular tree you are interested in7.
 
This method does not hide which certificate is being checked, but it does hide who is checking it 
from the log: most clients are configured to use their ISP’s nameservers (or some other caching 
resolver), so all the log will see is that some client of a particular ISP is interested in a particular 
certificate. The ISP will, of course, know which client, but they also already have access to the IP 
addresses that client visited.
 
The second method is for the auditor to request a range of certificates around the one of interest 
and check all of them, including the one they want to check. In order to do this, the log must 
also make available a range of timestamps for each chunk of log. That is, for every, say, 256 
certificates the log will say what the lowest and highest timestamp in the chunk is8. Note that 
there may be overlap between chunks. The client can thus choose all chunks that may include 
the certificate it has, since it knows the timestamp from the SCH, and fetch all the corresponding 
hashes and their proofs. All the log learns is that the client wants to verify one of the certificates it 
fetched.
 
Finally, since the proofs can be generated by anyone with a copy of the log, clients can also 
choose to either keep their own copy, or verify with some trusted third party that keeps a copy 
(note that because of the signatures on the STH and SCH this third party only need be trusted to 
preserve privacy, not to be honest about the log contents).

Gossip
All the above allows any particular client to check that their view of the world is consistent with their 
past views, but the final piece in the puzzle is to show that everyone’s views are consistent with 
each other.
 
This can be achieved by exchanging STHs and SCHs between different clients through gossip 
protocols. These can then be checked for consistency using the methods described above. Clients 
wishing to preserve privacy can verify their own SCHs against STHs fetched from the log or its 
mirrors and only gossip the latest STH they have seen.

7 Because the newest part of the tree is often partially filled, these hashes change as new entries are added 
to the tree. However, older entries (the “left hand side” of the tree) will not change from one version to the 
next and so can be cached rather than repeatedly queried. This means that even though the tree grows 
forever, the lengths of proofs transmitted over the wire should remain relatively stable.
8 We use these summaries for efficiency - the data is available in the STHs already, of course. However, 
since the client will rely on the summaries for its privacy, the summaries should also be signed and verified.



Sizes
(Assuming SHA-256 as the hash function.)
 
Data transmitted as part of a TLS handshake: 8 bytes timestamp + signature (<100 bytes for 
ECDSA, 256+ bytes for RSA)
 
Signed tree head (STH): 8 bytes timestamp + 32 bytes root hash + 8 bytes tree size + signature 
 
Merkle proof: log2(size of tree) x 32 bytes + STH. For a tree with 1M certificates: 640 bytes + 8 
bytes timestamp + signature.
 
Caching: assume for example a client that caches an intermediate node hash of every subtree 
of 256 certificates. Cache size for a tree with 1M certificates: 32M bytes/256 + current signature 
~ 128 kB. Merkle proof size: 8 x 32 = 256 bytes. (A client will only need to request the rest of the 
proof + signature if there is a mismatch at the cached node.)


