
Why You Should Care About CHERI
Ben Laurie, Laurence Tratt, Robert N. M. Watson

Introduction
CHERI is a hardware mechanism for fine-grained memory management that is portable to a wide
range of CPUs. It has so far been implemented on MIPS-64, 64-bit Arm and 32/64-bit RISC-V
(three different open source cores). CHERI architectural capabilities, a new hardware data type,
can be used by the operating system, runtime, and compiler to constrain future execution.

There are two quite different ways to use CHERI - the first being a software compartmentalisation
mechanism that can be used in a similar way to process isolation in existing operating systems and
the second being a fine-grained in-process memory safety mechanism that may require modest
source-code modifications. Of course, these can be combined, but their security and performance
implications can be considered independently when it comes to deployment.

We discuss both use cases below.

Compartmentalisation
There are different ways to express compartmentalization using CHERI. One is an ambient mode,
in which pointers remain 64 bits but are dereferenced relative to a small number of capability
registers1, typically one for code, one for data, and one for hardware exceptions . This can be
combined with other CHERI features (notably function sentries, which allow low-privilege code to
call high-privilege code in a safe way) to control when/how these capability registers are changed.

In this mode, CHERI acts like a very fine-grained, cheap MMU. This brings several advantages,
the most obvious being more efficient use of memory, large gains in context-switching
performance2, reduced energy consumption and cheap, privilege-free creation of subprocesses.

In other words, you can have better, faster devices that don't drain battery and are also more
secure.3

Efficient Use of Memory
Because capability registers use a clever encoding scheme, they can represent common memory
sizes (notably “small” sub-page objects) precisely: memory does not have to be allocated in page

3 While it may seem like other hardware extensions such as the RISC-V pointer masking proposal offer
similar security guarantees with lower hardware implementation complexity, the RISC-V proposal is actually
significantly less flexible and incurs higher overheads. Switching between domains either requires
involvement of a privileged domain, which can be costly, or alternatively making the base register writable by
anyone, which negates the security benefits. Furthermore, accessing data outside of the current
power-of-two-sized region requires a privilege escalation whereas on CHERI this can be achieved by
explicitly delegating capabilities referencing data outside the compartment.

2 For some figures, here’s a 2016 paper. It shows a domain-crossing performance gain of up to a few
hundred times, depending on buffer size. Unpublished results suggest we can expect even better gains.

1 Capability registers have bounds and permission bits and are 128 bits wide in a 64 bit architecture. All
memory accesses are relative to capability registers.

mailto:benl@google.com
https://tratt.net/laurie/
https://www.cl.cam.ac.uk/~rnw24/
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201505-oakland2015-cheri-compartmentalization.pdf
https://github.com/riscv/riscv-j-extension/blob/master/pointer-masking-proposal.adoc


sized chunks, thus reducing overheads, particularly for the common case of small buffers or
processes4. The encoding scheme is also capable of precisely representing common
larger-than-page memory sizes (i.e. multiples of the page size) precisely, covering most practical
use cases.

Context Switching Performance
If CHERI is used as the process isolation mechanism instead of the MMU - and the MMU is solely
used for virtual memory - then context switches become a simple matter of changing the contents
of the capability registers. This means that a context switch looks more like a function call than a
traditional context switch. MMU-based context switches typically cost around 10,000 clocks once
TLB misses and the like are factored in. CHERI-based context switches take around 50 clocks.

Furthermore, context switches require no privileged operations and so can be done directly
between processes without requiring intervention from the kernel.

Benchmarks show that IPC typically gets a performance gain of at least 2 orders of magnitude as a
result (in progress paper).

Reduced Energy Consumption
Because every pointer dereference is explicitly linked to its bounds, MMU lookups are no longer
required, which means far less power wasted in preventing illegal memory accesses.

Cheap, Privilege-free, Lightweight Process Creation
In CHERI the capability registers provide memory bounds. Reduction of the power of a capability
register (i.e. tightening bounds or reducing permissions) is an unprivileged operation and hence a
process can, if it desired, carve up its own memory space without reference to the kernel or any
other privileged entity.

Memory Provenance
Because the only operations permitted on capability registers reduce their power5 (either by
disabling permissions or tightening memory bounds) the provenance of memory regions is
assured. That is, if two disjoint regions of memory are set up and neither contains a capability to
the other, or to any other memory region that contains such a capability, then they will never be
able to access each other.

How To Use This Mode
Probably the best way to use this is for the operating system to use CHERI for process isolation
instead of an MMU or other mechanism. To get the performance benefits, the MMU should only be

5 Slightly annoyingly, the Arm implementation allows EL3 to create capabilities out of thin air, which does
break this model for EL3. On the other hand, if you can’t trust EL3, you’re in trouble already. This is to allow
efficient swapping of capabilities to storage - when they are retrieved they can be directly instantiated rather
than having to laboriously rederive them from an existing capability. This annoyance is pretty minimal but if it
didn’t exist it would permit EL3 to voluntarily reduce its own power.

4 We anticipate cheap context switches leading to lots of small processes as this is one of the easiest ways
to mitigate various common software security problems.

https://drive.google.com/file/d/1cEdtPiWtUPuccUzN6_HLdflJkghuPTc1/view?usp=sharing


used for swap and the like - all processes should have the same memory map (more or less -
differences can be useful and may not have a large impact on performance depending on exactly
what is going on).

Using unmodified software will only get performance and granularity benefits. However, the
increased performance of IPC also enables much finer-grained compartmentalisation - or more
existing compartments (e.g. Chrome could run more sandboxes at the same time than is currently
feasible) - this, of course, requires software engineering to achieve.

Alternatively, instead of the operating system directly using CHERI, it can instead be used as
mentioned above: to create lightweight processes within an OS provided process. This may not
yield all of the performance benefits but if used instead of process-based compartmentalisation for
code that already works that way, some improvements should be made without loss of security.

Memory Safety
Since this is extensively covered elsewhere, I’ll be brief.

In this mode, all pointers become “fat” - that is, they include bounds, permissions, and a tag as well
as the pointer itself. This mitigates many common memory safety issues, the most obvious being
buffer overflows. It also prevents the “invention” of pointers - that is, it is no longer possible to
simply calculate a pointer and start using it, instead it must be derived, according to the CHERI
rules, which prevent derivation of pointers with more access, which makes harder for attackers
even if they manage to get arbitrary code execution (and, of course, that is also harder). Unlike
other deployed C/C++ memory-safety techniques in software and hardware, CHERI memory
protection is deterministic, and is not based on secrets that may be leaked or brute forced.

The downside of this mode is that it requires doubling pointer size which leads to reduced
performance, though how much is very dependent on what the code does. As a good rule of
thumb, code with high dynamic pointer density in its dynamic memory access pattern, which was
likely affected negatively by a transition from 32-bit to 64-bit, may also see performance impact
with CHERI memory protection. However, because of the 64-bit transition, those runtimes typically
already employ pointer compression techniques (e.g., 37-bit pointers stored in 32-bit words) that
can continue to be deployed (with new security tradeoffs, as capabilities would not be used for
those specific pointers).

Also, some assumptions programmers tend to make about the compatibility of pointers and
integers are false in this model and may require code changes (although such conversions are not
portable anyway and are best avoided). In selected systems code and architecture-aware portions
of language runtimes -- i.e., within the implementations of memory allocators, just-in-time compilers
(JITs), etc -- this can be as high as 1% LoC change. However, a recent study showed that adapting
an X11-based open-source desktop stack more typically required around 0.036% LoC change --
mostly for minor C hygiene correcting actual C bugs that don’t manifest on current hardware or
compilers. Almost no C++ code required any change. Additionally, the majority of these required
changes were pointed out by compiler diagnostics and/or sanitizer instrumentation.

The upside is that many memory safety problems become fail stop instead of being exploitable
vulnerabilities.

https://capabilities-limited.github.io/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf
https://capabilities-limited.github.io/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf


How To Use This Mode
This requires compilers to emit CHERI code and hence needs an updated toolchain. Compilation
in “capability mode” then introduces some incompatibilities with code as it is written in practice
which may lead to compilation or runtime errors that need to be tracked down and fixed. However,
experience says these are fairly rare and generally quite easily fixed.

Can I use memory safety with CHERI compartmentalization?
Yes. And there are performance gains that can be realized best when code does use capabilities
for at least selected, if not all, pointers, as capability-based pointers can safely reference memory
shared between compartments. Most compartmentalization case studies to date have combined
both techniques. Compartmentalization will also sometimes address the question of how to
minimize the potential denial-of-service arising from attempts to exploit memory safety violations,
by allowing stronger isolation of smaller software modules, such as image-processing libraries.

What Should You Do About This?
● Evaluate

○ There is a comprehensive list of CHERI resources.
● Tell Arm you are interested in CHERI.
● Encourage the RISC-V consortium to adopt CHERI-RISC-V.

Related
● Microsoft Security Response Center “Security Analysis of CHERI ISA”. Note that this

predates Cambridge’s work on temporal safety. Notable quote: “Estimating conservatively,
the current implementation of CHERI on the CheriBSD project would deterministically
mitigate a large subset of spatial safety vulnerabilities which account for almost half of the
vulnerabilities reported to MSRC in 2019”. Note that this is an analysis of the memory
safety mode only, not the compartmentalisation mode.

● Arm Morello one year on - includes architecture, instruction set and a simulator of the
chipset.

● Cambridge CHERI software stack on Morello.
● Assessing the Viability of an Open-Source CHERI Desktop Software Ecosystem.

Open challenges (very much non-exhaustive!)
● We don’t currently know how to define what extra security benefits we get by running things

under CHERI: “minimal porting” is one thing; “adapt to take full advantage of CHERI” quite
another. There are many shades of grey in between and we lack both terminology (to aid
discussion) and an understanding of the meaningful points in the design space.

● Pure capabilities vs. hybrid: in some cases the latter can be easier to reason about than the
former due to the DDC register’s semi-global access restrictions. When is it more
appropriate to use pure capabilities or hybrid?

● What are good CHERI idioms? We only have limited examples to draw upon (see e.g.
CHERI misidioms).

https://www.links.org/files/CHERI%20projects%20overview.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://www.arm.com/company/news/2020/10/morello-program-one-year-on
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-morello-software.html
https://capabilities-limited.github.io/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf
https://github.com/capablevms/cheri_misidioms


● When adapting language runtimes for the pure capability mode, which already face
challenging tradeoffs with respect to pointer size, what is the security and performance
impact of continuing to use integer pointers (e.g. for language heaps)?

● What are the performance consequences of different approaches to using CHERI?


